1 kW grid-connected PV system after two years of monitoring

S.M. PIETRUSZKO* and M. GRADZKI

PV Centre, Institute of Microelectronics and Optoelectronics, Warsaw University of Technology
75 Koszykowa Str., 00-662 Warsaw, Poland

The paper describes performance of the grid-connected 1-kW PV system installed on a grammar school in Warsaw after two years of operation. The system consists of twenty Millennia MST-50 MV modules and inverter Sunny Boy GCI 1200. The performance of the system is continuously monitored according to guidelines in IEC 61724.

Energy production in the first year was about 740 kWh and it was slightly higher than expected with respect to the simulation done before installation. In the second year, the energy production was about 680 kWh. The measured efficiency of the PV modules is about 5%, efficiency of the inverter is about 92% and efficiency of the entire PV system exceeds 4%. The performance ratio is in the range from 0.5 to 0.8.

Keywords: photovoltaics, PV system, grid-connected, monitoring.

1. Introduction

It is an appropriate time to highlight the potential of solar photovoltaic (PV) technologies due to the increased awareness in energy and environmental issues in the general public in Poland [1,2]. The goal of the project was to show potential of solar technology through the installation of PV system and to prepare analysis of conditions for integrating PV systems with buildings and power grid. This was the pioneer work done on photovoltaics in Poland.

Because of the lack of information about some major solar energy options, such as photovoltaics, there is a need for more education and public information on the energy and environment through demonstration projects, in the media, and in schools. PV is a rapidly developing technology with a very high potential in coming decades. Demonstration projects are crucial in Poland. They will show the public the benefits of the solar energy. Introducing a newly developing technology, building-integrated photovoltaics (BIPV) will affect the local economy through beneficial economic, environmental, and social impacts.

Thanks to US Ecolinks Program, local authorities of Warsaw-Wawer (suburb of Warsaw) and BP Solar, 1-kW grid-connected PV system was installed on the roof of the grammar school. The PV system installed on the school’s roof was one of the first implementations of BP Solar’s trademarked Solar Energiser concept in Europe. It was also one of the first grid-connected PV systems in Poland.

The 1-kW system (Fig. 1) was installed in December 2000 on the roof of the Public Grammar School No. 76 in the Municipality of Warsaw-Wawer. The system consists of 20 BP Solar double-junction thin-film amorphous silicon PV modules (MST-50 MV) in the universal frames. The inverter Sunny Boy GCI 1200 is connected to the public grid via a single-phase connection with an electrical energy meter. The installation is located in Warsaw (21° 12’ E, 52° 09’ N), facing south and tilted at 30. Such value of tilt angle was chosen to maximise a yearly energy production.

During the first year of operation, two PV modules got damaged – the laminate got broken. We rearranged the connections of PV array to get an array with a nominal power 900 W.

The monitoring system was designed to meet guidelines of the standard IEC 61724 [3,4]. It consists of the data ac-
quisition system (DAS) build into inverter, a cluster of meteorological sensors, controller sunny boy control plus and a computer that collects and visualizes the measured data. The following parameters are measured:

- electrical parameters (measured by the DAS build into the inverter installed on the PV system supporting structure):
 - DC and AC voltage, current, power and energy production,
 - cumulated AC energy supplied to grid,
 - utility grid impedance and frequency,
 - resistance of isolation of PV array,

- meteorological parameters (installed on the top of the PV array):
 - irradiance in horizontal plane and in plane of PV array (Spectron 100),
 - ambient and PV module temperature (PT 100),
 - wind velocity.

The electrical parameters of the PV system have been recorded since the day of its installation in the end of December 2000, meteorological data have been recorded since the second half of February 2001. The calculations presented below were made assuming that nominal power of the PV system from January to June 2001 was 1 kW, and from August 2002 the nominal power was 900 W.

3. Analysis of the PV system performance

During the first year of operation the system generated about 740 kWh and during the second year about 680 kWh. Energy production was higher than that expected from the simulation, even though the in-plane irradiation was lower than this taken to the simulation. Decrease in the generated energy in 2002 was caused by malfunction of two PV modules.

The efficiency of the system in good irradiance conditions during the months from May to August exceeds 4% (Fig. 2). The efficiency of inverter is about 92% and the efficiency of PV modules goes up to 5%. The smaller efficiency than expected can be caused by: difference in spectrum of sunny irradiance in the specific location and spectrum defined as STC (Standard Test Conditions), dirt accumulation on the front surface of PV modules.

For more detailed analysis of the PV system performance, the following normalised parameters were used:

- Y_A is the array yield, it is the array daily energy output per 1 kW of the installed PV array, $Y_A = E_d/P_o$, Y_A is in h/d (hours per day), it represents the number of hours per day that the array would need to operate at its rated power P_o to generate the same daily energy E_d that was measured by monitoring system,
- Y_f is the final yield, it is a daily portion of energy supplied to the grid per 1 kW of the installed PV array, $Y_f = E_d/P_o$, Y_f is in h/d (hours per day), it represents the number of hours per day that the system would need to operate at its PV array’s rated power P_o to generate the same daily energy that was supplied to grid E_d,
- Y_r is the reference yield, it is total daily in-plane irradiance normalised to the PV module’s in-plane reference irradiance G_i, $Y_r = \sum_{day} G_i/G_{i_r}$, Y_r is in h/d (hours per day), it represents the number of hours per day which the solar radiation would need to be at reference irradiation levels in order to contribute the same incident energy as it was measured. Usually G_i is equal to the STC irradiation of 1000 W/m²,
- L_c are the capture losses in h/d (hours per day), they are the losses due to PV array operation, $L_c = Y_r - Y_a$,
- L_s are the system losses in h/d (hours per day), they are the losses due to operation of power conversion unit (inverter), $L_s = Y_o - Y_f$.
- PR is the performance ratio, it indicates the overall effect of losses, $PR = Y_f/Y_r$.

In the presented PV system, the PR during the days with the daily irradiation higher than 2 kWh/m² is in the range between 0.55 and 0.8 (Fig. 2). In Fig. 3, the final yield versus reference yield is presented. Most of the points are between the solid line representing PR equal to 0.55 and the dashed line representing PR equal to 0.8 [3].

In summer days, the PR reaches its maximum possible value, during some winter days the PV array is covered by snow and power generated is too low to run the inverter. In these days, there is no energy production so PR is equal to 0.
In Fig. 4, one can observe an effect of decrease of PR, in the second year of operation of the PV system most probably due to degradation of the parameters of amorphous silicon. During the first year in the most of days PR was in the range from 0.7 to 0.8. In the next years, the PR rarely exceeds the value of 0.7.

The system losses \(L_s \) are usually about 6% of the PV system’s energy balance with no seasonal deviation. Proportion between the capture losses \(L_c \) and the final yield change during the year in range from 25% in spring and summer up to 95% in winter months due to snow accumulation. The final yield reaches up to 80% in summer time, but in winter it may fall down to about 5% (see Fig. 5).

As show the presented above results, in Polish conditions, the PV system works efficiently. Solar irradiation is good enough to produce electrical energy which can be used to supply a small load or to sell it to the utility grid. Since the PV is a rapidly developing technology with a very high potential in the coming decades, demonstration projects are necessary in Poland to show the public the benefits of solar energy.

In this project, we also focused on demonstration and social aspects which, in the future, may help to introduce photovoltaics in Poland.

Acknowledgements

Monitoring of the PV system and preparation of this publication was possible through the support provided by the European Commission in the Project PV Centre Contract no: ENK5-CT-2002-80665.

References

Sponsored by:
- The European Commission
- UNEP—United Nations Environment Programme
- ADEME—Agency for Environment and Energy Management
- EDF—Electricité de France
- CEA—New Energy Technologies
- TOTAL FINA ELF
- Syndicat des Energies Renouvelables
- EPIA—European Photovoltaic Industry Association

Realized by: WIP—Munich and ETA—Florence

PROGRAMME
The five-day programme for the Conference will comprise:
- Plenary lectures focusing on the state-of-the-art and targets of PV
- Oral and poster presentations of specific research, development and demonstration projects, PV applications and PV market
- Exhibition of PV products and services
- Workshops, fora, contact events on specific PV issues
- A day parallel to the programme on PV in architecture and urban planning
- Scientific tours and a social programme

CONFERENCE SUBJECTS
Papers are invited on the following topics:

1. Fundamentals, Novel Devices and New Materials
 Theoretical studies, innovative concepts, organic materials, thermophotovoltaics

2. Crystalline Silicon Solar Cells and Materials Technology
 including mono- and multicrystalline silicon cells and materials, thin-film crystalline silicon cells, processing technology of feedstock, wafers, sheets, ribbons and cells

3. Amorphous and Microcrystalline Silicon
 film preparation, material characterisation and theoretical studies of amorphous and microcrystalline silicon cells, manufacturing and industrialisation

4. CIS, CdTe and other (II-VI) Ternary Thin Film Cells
 film preparation, material characterisation, theoretical studies, manufacturing and industrialisation

5. PV Modules and Components of PV Systems
 including encapsulation, production technology, standards and testing of cells, modules, arrays and systems; concentrator systems, power conditioning, grid interfacing, storage systems; development of standard products, professional stand-alone systems and their applications

6. PV Systems in grid-connected applications
 Integration in buildings. Technical and aesthetic issues, landscape integration of larger systems, utility issues. Market deployment, national and regional support strategies, policies, finance and legislation. Examples of successful projects and programs

7. Global Aspects of PV Solar Electricity
 PV power for the world. PV as part of a global strategy to integrate the renewables in sustainability policies. Stand-alone systems for electrification, mini grids for villages and towns, islands, hybrid systems. Market deployment, national and regional support strategies, policies, finance and legislation. Strategies in developing and emerging countries. North-South co-operation

8. Space Cells and Systems
 Including III-V cells

Conference chaired by:
- Dr. Winfried Hoffmann, RWE SCHOTT Solar
- Jean-Louis Bal, ADEME (Vice Chairman)

Coordination of the Scientific Programme:
- Dr. Heinz Ossenbrink
- European Commission, Joint Research Centre

 REVIEW PROCEDURE
Papers will be presented in plenary, oral and poster sessions and all presented papers will be published in the Proceedings. Authors wishing to submit a contribution should read the following instructions carefully and send an abstract to the address given below. The abstract, single spaced and in English, should include:
- Applicable subject number (1 to 8)
- Full title
- Full name and address of one author for all correspondence
- For each author and co-authors, full name, affiliation, address, phone/fax/e-mail
- Purpose of the work
- Approach
- Scientific innovation and relevance
- Results
- Conclusions

The abstract should not exceed one page (size A4, 210×300 mm). In addition, authors may add up to 3 explanatory pages, which will facilitate the reviewers assessment.

DEADLINE FOR RECEIPT OF ABSTRACT: 31 October 2003

Only contributions complying with the above specifications will be considered. Please send preferably by email one copy of this complete information (abstract plus optionally up to 3 explanatory pages) as a *.doc or *.pdf file to:

- e-mail: pv.conference@wip-munich.de
- e-mail: pv.conference@wip-munich.de
- e-mail: pv.conference@wip-munich.de

For abstract submission by mail, please send also 1 hard copy and a 3.5 IBM formatted diskette or a CD-Rom with a *.doc file to:

WIP
Ms. Christine Flingelli
Sylvensteinstr. 2
D-81369 Munich, Germany

If you have any questions concerning abstracts please contact:

WIP
Telephone +49-(0)89-720-12735
Telefax +49-(0)89-720-12791
e-mail: pv.conference@wip-munich.de

For enquiries concerning the abstracts review and topics, address to:

European Commission, JRC
Dr. Éwan Dunlop
Telephone +39-0332-785 885
Telefax +39-0332-789 646
e-mail: pv.conference@jrc.it

The abstracts will not be public accessible until the Conference. All authors will be notified by January 2004 of the decision of the Programme Committee. Authors of accepted abstracts will receive at the same time special instructions for the preparation of the final papers for the Proceedings.