Molecular engineering of triphenylene-based discotic liquid crystal conductors

R.J. BUSHBY*1, K.J. DONOVAN2, T. KREOUZIS2, and O.R. LOZMAN1

1Centre for Self Organising Molecular Systems (SOMS), University of Leeds, Woodhouse Lane, LS2 9JT Leeds, United Kingdom
2Queen Mary and Westfield College, University of London, Mile End Road, E1–4NS London, United Kingdom

2,3,6,7,10,11-hexakis(hexyloxy)triphenylene (HAT6) gives a columnar hexagonal mesophase between 70 and 100 °C and a hole mobility of 7.1 × 10⁻⁴ cm²V⁻¹s⁻¹. Two methods are compared for extending the mesophase range to encompass the operationally-significant room temperature range and for enhancing the charge-carrier mobility: introduction of a lateral nuclear dipole and formation of a CPI (complementary polytopic interaction) ‘compound’. Introduction of two fluorine substituents into the nucleus of HAT6 gives 1,4-difluoro-2,3,6,7,10,11-hexakis(hexyloxy)triphenylene (2F-HAT6). This has a lateral nuclear dipole and gives a columnar hexagonal mesophase from below room temperature to 121 °C whereas the CPI mixture of 2F-HAT6 with 2,3,6,7,10,11-hexakis(4-nonylphenyl)triphenylene (PTP9) has a columnar mesophase from below room temperature to 129 °C. At 100 °C the time-of-flight hole mobilities of these two systems are increased to 1.6 × 10⁻³ cm²V⁻¹s⁻¹ for 2F-HAT6 and 1.5 × 10⁻² cm²V⁻¹s⁻¹ for the CPI compound 2F-HAT6 + PTP9.

Keywords: liquid crystal, semi-conductor, time-of-flight, photoconduction, hole mobility, molecular engineering.

1. Introduction

The great advances made by organic synthesis in the last few decades mean that it is now relatively easy to engineer the bulk properties of organic molecular materials by refinement of the molecular structure. In the liquid crystal field this capability has been exploited for many years in the area of display applications but liquid crystals are now beginning to excite interest as semiconductors [1,2]. Relative to crystalline or amorphous semi-conductors, liquid crystals have the advantages of good processability, self-healing, anisotropy, and spontaneous alignment. The columnar phases of discotic liquid crystals have been likened to an array of self-aligning molecular wires (Fig. 1). The stacked aromatic nuclei provide a graphite-like conducting pathway along the columns while an annulus of mobile disordered alkyl side-chains insulates each column from its neighbours. Although commercial applications have yet to be developed, applications have been suggested in xerographic copiers, laser printers [3], photovoltaic devices, electroluminescent devices [4], FETS and many other areas [5]. However, to realize such dreams we need mesophases that persist down to room temperature. Triphenylenes are the most synthetically accessible discogens and the only discogens currently made on a commercial scale [6] but none of the simple 2,3,6,7,10,11-hexa-n-alkoxytriphenylenes give columnar phases that persist down to room temperature [7]. The most straightforward ways of extending the range over which the columnar phases of a discotic liquid crystals is stable are by introducing a lateral dipole into the aryl core [8] or by introducing branching into the side-chain [9] or by forming a non-covalent CPI (complementary polytopic interaction) ‘compound’ [10,11]. A nuclear dipole is believed to stabilize the columnar structure through an anti-ferroelectric correlation of dipoles along the column as shown in Fig. 2 (left) [8] and in CPI compounds the columnar structure is stabilized by interlocking alternating large and small discs (Fig. 2, right). From the standpoint of improving the conductivity both of these approaches have the additional benefit that potentially they can also increase the charge-carrier mobility whereas branching of the side-chains is likely to disorder the columnar structure and decrease the mobility.

In this paper, the effect of a nuclear dipole is explored using the example of the new triphenylene derivative 1,4-difluoro-2,3,6,7,10,11-hexakis(hexyloxy)triphenylene, 2F-HAT6 (1a) (Fig. 3) and the effect of CPI ‘compound’ formation using the 1:1 mixture formed between (1a) and 2,3,6,7,10,11-hexakis(4-nonylphenyl)triphenylene (PTP9 3a). In both cases the columnar structure is stabilized, columnar phases are obtained that persist down to room temperature and the time-of-flight hole mobilities are enhanced relative to the ‘parent’ discogen, 2,3,6,7,10,11-hexakis(hexyloxy)triphenylene HAT6 (2b).
2. Results and discussion

2.1. Synthesis and phase behaviour

The synthesis of 2F-HAT6 (1a) is summarized in Schemes 1 and 2. The key intermediate is 1,4-difluoro-2,3-dialkoxybenzene (8). This was synthesized from commercially available 2,5-difluorophenol (4) by the route shown in Scheme 1 [12]. Initial attempts to synthesize 2F-HAT6 (1a) directly by intermolecular oxidative coupling of 3,4,3',4'-tetraalkoxybiphenyl and 1,4-difluoro-2,3-dialkoxybenzene (8) with FeCl₃/DCM (Scheme 2) [13–15], failed to produce the required product. The successful alternative, shown in Scheme 2, used...
Suzuki coupling of boronic ester (10) with 1,2-dibromo-3,6-difluoro-4,5-dihexyloxybenzene (9) to give the substituted ortho-terphenyl (11) (Scheme 2) [16]. The ortho-terphenyl (11) was then oxidized using iron (III) chloride in dichloromethane, followed by a reductive methanol workup [15] to produce 2F-HAT6 (1a), isolated yields in excess of 90% (Scheme 2). The reactions all scale-up easily and batches of 2F-HAT6 greater than 1 g have been successfully prepared. The ease of purification of the product is worthy of note and it was found that repeated column chromatography and recrystallization were not necessary.

Differential scanning calorimetry (DSC) and optical polarizing microscopy (OPM) were used to characterize the phase behaviour (Table 1). 2F-HAT6 (1a) has a wider mesophase range than HAT6, (2a). It clears at a higher temperature and no Cr-Col transition is detected down to −30°C.

A thin film of 2F-HAT6 (1a) was prepared by compressing a melted sample between glass slides. The shear-

Fig. 3. Molecular structures of the materials discussed in this paper.

Scheme 1. Synthesis of 1,4-difluoro-2,3-dihexyloxybenzene (8, R = C₆H₁₃) and 1,2-dibromo-3,6-difluoro-4,5-dihexyloxybenzene (9, R = C₆H₁₃). (i): RBr/K₂CO₃/EtOH reflux, 77% (ii): 1. BuLi/THF/−78°C, 2. B(OMe)₃/THF/−78°C, 3. 1M HCl(aq), (iii): H₂O₂, 82% (iv): RBr/K₂CO₃/EtOH reflux, 80% (v): Br₂/DCM/0°C–25°C, 98%.
ing force that this produces causes the molecules to align in a planar manner with the columns parallel to the plane of the glass substrate and OPM shows the resultant sample to be birefringent and highly disordered. Upon heating into the isotropic liquid (> 122 °C) and slowly cooling, there is a first order isothermal transition into the Colh phase, and the predominant orientation of the Colh phase formed is homeotropic: with the columns forming perpendicular to the surface.

When the sample is cooled at 10°Cmin⁻¹ these homeotropic domains are large and a single homeotropic monodomain is formed when the cooling rate is 5°Cmin⁻¹. Figure 4(A) shows the optical texture of 2F-HAT6 (1a) after a single annealing cycle at a cooling rate of 10°Cmin⁻¹. An equimolar mixture of 2F-HAT6 (1a) with PTP9 (3a), forms a non-covalent CPI compound with a slighter higher clearing temperature and enthalpy than 2F-HAT6 (1a) alone (Table 1). Upon cooling from the melt, the liquid crystalline phase initially forms with the molecules aligned in a planar fashion; crystallizing from the melt as dendrites [Figs. 4(B) and 4(C)]. These quickly grow to cover the sample but, after as little as five minutes, these realign and a homeotropically aligned film is obtained, Fig. 4(D).

Table 1. Summary of the transitions [T/°C, (ΔH/kJmol⁻¹)] of 2F-HAT6 (1a), HAT6 (2a), HAT6-NO2 (2b), and PTP9 (3a) and the CPI ‘compounds’. The values were determined by DSC and OPM and the phases were assigned on the basis of OPM observations and X-ray diffraction experiments.

<table>
<thead>
<tr>
<th>Material</th>
<th>Phase behaviour °C (J/g)</th>
<th>Alone</th>
<th>CPI ‘compound’ with PTP9 (3a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2F-HAT6 (1a)</td>
<td>Colh 121.2 (13) I³</td>
<td></td>
<td>Col 129.3 (16) I³</td>
</tr>
<tr>
<td>HAT6 (2a)[7]</td>
<td>Cr 69.5 (48) Colh 99.5 (7) I</td>
<td></td>
<td>Colh 155 (19) I³</td>
</tr>
<tr>
<td>NO2-HAT6 (2b)[8,36]</td>
<td>Colh 137 (8) I³</td>
<td></td>
<td>Cr 100 I³</td>
</tr>
<tr>
<td>PTP9 (3a)[14]</td>
<td>Cr1 70.9 (34)c Cr2 81.1 (var)d I</td>
<td></td>
<td>–</td>
</tr>
</tbody>
</table>

*No other transitions down to –30°C (the lowest temperature tested).
*Enthalpies variable due to the immiscibility of the materials.
*Observed on second and subsequent heating only.
*Transition observed on first heating only.
2.2. Molecular modelling of the CPI ‘compound’

When a triphenylene-based discotic liquid crystal and PTP9 (3a) are mixed in a 1:1 stoichiometric ratio, a non-covalent CPI ‘compound’ is often formed. This exhibits properties that are entirely different to those of the individual components [10,11,17]. In the case of the 1:1 mixture of HAT6 (2a) and PTP9 (3a), for example, the melting point of the 1:1 mixture is much higher than that of either of the individual components. The X-ray diffraction patterns of such CPI mixtures show extra reflections and sharper diffraction maxima than those observed in either individual component. However, unlike the diffraction patterns obtained for the plastic [18] and helical phases [19], there are no peaks that can be unambiguously assigned as arising out from a three dimensionally ordered structure. The HAT and PTP molecules form an alternating stack (Fig. 3) which is more ordered than that formed by the HAT component on its own and this generally leads to higher mobilities. Clearly there is some sort of attractive interaction between the two molecules but this is not of the net quadrupole/net quadrupole or charge-transfer type. We have modelled the interaction using a simple molecular mechanics force-field with added terms to account for the interaction of pi-electrons (the XED, extended electron distribution force field) [17]. The attractive interaction actually arises out of favourable van der Waals and coulombic interactions across many sites of intermolecular contact giving a complementary many-site (polytopic) interaction (CPI). The XED modelling package has now been used to investigate the interactions of PTP with HAT6 (2a), 2F-HAT6 (1a) and NO2-HAT6 (2b) and the results are summarized in Table 2.

Table 2. Results of XED docking of HAT and PTP molecules showing the van der Waals and coulombic contributions to the total energy of the pair of molecules in the lowest energy configuration. The numbers underlined in brackets are the predicted energies for CPI compound formation, ΔE. ΔE is calculated as the difference between the energy of the heterodimer and the mean of the two homodimer energies [Eq. (1)]. A negative value of ΔE indicates that a stabilizing interaction is occurring between the molecules.

<table>
<thead>
<tr>
<th>Material</th>
<th>Energy (kcal mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VDW's</td>
</tr>
<tr>
<td>2FHAT1 (1b) + 2FHAT1 (1b)</td>
<td>–33.6</td>
</tr>
<tr>
<td>HAT1 (2c) + HAT1 (2c)</td>
<td>–37.4</td>
</tr>
<tr>
<td>NO2-HAT1 (2d) + NO2-HAT1 (2d)</td>
<td>–25.2</td>
</tr>
<tr>
<td>PTP1 (3b) + PTP1 (3b)</td>
<td>–45.9</td>
</tr>
<tr>
<td>2FHAT1 (1b) + PTP1 (3b)</td>
<td>–40.8 (–1.1)</td>
</tr>
<tr>
<td>HAT1 (2c) + PTP1 (3b)</td>
<td>–43.8 (–2.1)</td>
</tr>
<tr>
<td>NO2-HAT1 (2d) + PTP1 (3b)</td>
<td>–32.6 (+3.0)</td>
</tr>
</tbody>
</table>
To minimize computation time and to try to understand the ‘pi-stacking’ component, the side-chains have been reduced to methyl groups. In contrast to HAT6 (2a), 2F-HAT6 (1a) and NO2-HAT6 (2b) have net dipoles, rather than a net quadrupole as the lowest non-zero terms of their multipole expansions. The single crystal X-ray structure of NO2-HAT2 (2e) shows that the molecules pack in such a way as to maximize the dipolar interaction between adjacent disks (Fig. 5). The dipole moment for HAT2-NO2 (2e) is estimated as $\mu\sim6$ Debye and is almost parallel to the direction of the carbon-nitrogen bond [8]. In 2F-HAT1 (1b), the two fluorine groups are opposed across the triphenylene ring, producing a small dipole ($\mu\sim1$ Debye) in the plane of the nucleus and perpendicular to a line drawn between the fluorine atoms. In agreement with the experimental results the XED calculations predict that the net interaction between PTP1 and HAT1 and between PTP1 and 2F-HAT1 are favourable but that between PTP1 and NO2-HAT1 is not. The force field programme allows these differences to be understood in terms of the partitioning of the interaction energy between VDW and Coulombic terms (Table 2). The HAT derivatives are all predicted to have a favourable coulombic interaction with PTP1 (3b), although the size of this is reduced as the dipole moment on the HAT component increases. When HAT1 (2c) is docked with a PTP1 (3b) molecule the energy minimum is located with the HAT1 (2c) centrally above or below the triphenylene nucleus of PTP1 (3a) (Fig. 6, left). As also shown schematically in Fig. 3, the peripheral phenyl substituents on the PTP nucleus create a ‘dish-like’ hollow into which the HAT fits. The program also predicts that, when 2F-HAT1 (1b) is docked with PTP1 (3b) the minima are located a little off-centre (Fig. 6, centre) so as to exploit the quadrupolar interactions of the peripheral phenyl substituents of the PTP with the dipole of the HAT. In NO2-HAT, the dipole moment is much larger and the HAT component seems to finds it increasingly difficult to find a suitable location that will compensate for the dipole moment. Furthermore, the α-nitro substituent in NO2-HAT1 (2d) introduces steric hindrance. The combination of these two factors produces a minimum energy heterodimer structure in which the components are widely displaced and often tilted with respect to each other. The VDW’s term suffers because of the lack of core-core overlap and the mixture of NO2-HAT1 (2d) and PTP1 (3a) is correctly predicted to be unstable (see Tables 1 and 2). The prediction of off-central stacking for 2F-HAT1 is interesting. It does not seem to greatly affect the overall energy of the pair or to prevent CPI compound formation.

Table 3. Summary of time-of-flight hole mobilities for HAT6 (2a) and 2F-HAT6 (1a) and their CPI ‘compounds’ with PTP9 (3a).

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature (°C)</th>
<th>Phase</th>
<th>Mobility (cm²V⁻¹s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2FHAT6 (1a)</td>
<td>25</td>
<td>Coh</td>
<td>1.6×10⁻³</td>
</tr>
<tr>
<td>HAT6 (2a)[21]</td>
<td>70</td>
<td>Coh</td>
<td>7.1×10⁻⁴</td>
</tr>
<tr>
<td>2FHAT6 (1a) + PTP9 (3a)</td>
<td>25</td>
<td>Coh</td>
<td>1.5×10⁻²</td>
</tr>
<tr>
<td>HAT6 (2a) + PTP9 (3a)[37]</td>
<td>40</td>
<td>(Col)Glass</td>
<td>1.39×10⁻²</td>
</tr>
</tbody>
</table>

To minimize computation time and to try to understand the ‘pi-stacking’ component, the side-chains have been reduced to methyl groups. In contrast to HAT6 (2a), 2F-HAT6 (1a) and NO2-HAT6 (2b) have net dipoles, rather than a net quadrupole as the lowest non-zero terms of their multipole expansions. The single crystal X-ray structure of NO2-HAT2 (2e) shows that the molecules pack in such a way as to maximize the dipolar interaction between adjacent disks (Fig. 5).

The dipole moment for HAT2-NO2 (2e) is estimated as $\mu\sim6$ Debye and is almost parallel to the direction of the carbon-nitrogen bond [8]. In 2F-HAT1 (1b), the two fluorine groups are opposed across the triphenylene ring, producing a small dipole ($\mu\sim1$ Debye) in the plane of the nucleus and perpendicular to a line drawn between the fluorine atoms. In agreement with the experimental results the XED calculations predict that the net interaction between PTP1 and HAT1 and between PTP1 and 2F-HAT1 are favourable but that between PTP1 and NO2-HAT1 is not. The force field programme allows these differences to be understood in terms of the partitioning of the interaction energy between VDW and Coulombic terms (Table 2). The HAT derivatives are all predicted to have a favourable coulombic interaction with PTP1 (3b), although the size of this is reduced as the dipole moment on the HAT component increases. When HAT1 (2c) is docked with a PTP1 (3b) molecule the energy minimum is located with the HAT1 (2c) centrally above or below the triphenylene nucleus of PTP1 (3a) (Fig. 6, left). As also shown schematically in Fig. 3, the peripheral phenyl substituents on the PTP nucleus create a ‘dish-like’ hollow into which the HAT fits. The program also predicts that, when 2F-HAT1 (1b) is docked with PTP1 (3b) the minima are located a little off-centre (Fig. 6, centre) so as to exploit the quadrupolar interactions of the peripheral phenyl substituents of the PTP with the dipole of the HAT. In NO2-HAT, the dipole moment is much larger and the HAT component seems to finds it increasingly difficult to find a suitable location that will compensate for the dipole moment. Furthermore, the α-nitro substituent in NO2-HAT1 (2d) introduces steric hindrance. The combination of these two factors produces a minimum energy heterodimer structure in which the components are widely displaced and often tilted with respect to each other. The VDW’s term suffers because of the lack of core-core overlap and the mixture of NO2-HAT1 (2d) and PTP1 (3a) is correctly predicted to be unstable (see Tables 1 and 2). The prediction of off-central stacking for 2F-HAT1 is interesting. It does not seem to greatly affect the overall energy of the pair or to prevent CPI compound formation.

2.3. Time-of-flight photoconduction

In time-of-flight studies of a homeotropically aligned columnar phase, the carrier mobility along the columns is determined directly from the decay in the current after charge carriers are injected using a short pulse of laser light [20]. In the columnar hexagonal phase of hexaalkoxytriphenyl-

![Fig. 6. Left, Minimum energy structure from the XED docking of HAT1 (2e) with PTP1 (3b). In the majority of the low energy docked structures the HAT1 (2e) molecules are located directly over the central triphenylene ring. Centre: Shows the minimum energy structure for docking 2F-HAT1 (2b) with PTP1 (3b). The dipole introduced by the inclusion of fluorine atoms causes a loss of symmetry. Right: Shows a minimum energy structure for docking NO2-HAT1 (2d) + PTP1 (3b). All heterodimers are viewed along the tertiary inertial axis of the pair, the primary and secondary inertial axes being aligned with x and y coordinate axes respectively. The PTP component is shown in grey and the HAT component in black.](image)
In such low mobility systems, conduction is dominated by a hopping mechanism [23–25] and the mobility is found to depend on the coupling of the polaron to its environment [25], the size of the aromatic core [26], the overlap disc-to-disc [27] but most particularly on the order of the liquid crystal: the correlation length within the column [28]. This is easy to understand. Although the fluid nature of liquid crystals meant that there are no persistent deep traps the number and nature of the short-lived traps and barriers that the charge carrier has to overcome in its passage through the sample depends on the order and the extent of thermal fluctuations. The introduction of a strongly electron withdrawing group such as –NO₂, –CN, –F into the core of the discotic molecule stabilizes the columnar phases but in terms of charge carrier mobility it produces two opposing effects. Firstly, the anti-ferroelectric dipole-dipole coupling between adjacent rings (Fig. 3) will increase the correlation length resulting in an increase in the charge carrier mobility but, secondly, the interaction of the hole with surrounding disordered dipoles will increase the dispersion in the hopping times. This latter effect is well known in isotropic amorphous molecular solids where introduction of a molecular dipole is seen to result in an increased spread in hopping times and lower mobilities [29,30]. Good TOF transits were observed for the Col₃ phase of 2F-HAT6 (1a) and a typical example is shown in Fig. 7. There is a weak temperature dependence of the hole-mobility, which has a maximum value of 1.6x10⁻³ cm²V⁻¹s⁻¹ at 100°C (Fig. 8). In the case of the CPI compound formed between 2FHAT6 (1a) and PTP9 (3a), the mobility is an order of magnitude greater. The transits appear slightly different in that the long time photocurrent does not decay so rapidly to zero (Fig. 9). The broadening of the TOF transit may be the consequence of the lack of perfect alternating AB columnar structure and the presence of occasional ABB or AAB defects. These are unavoidable. It is impossible to produce mixtures with absolutely exact 1:1 stoichiometry. As in the case of the introduction of a lateral dipole, formation of a CPI ‘compound’ produces two opposing effects in terms of charge carrier mobility. Firstly, the interlocking of adjacent rings (Fig. 3) will increase the correlation length resulting in an increase in the charge carrier mobility but, secondly, the mismatch in the HOMO/LUMO levels of 2F-HAT6 (1a) and PTP9 (3a) [31,32] means that the charge carriers need to overcome the barriers presented by the alternating molecules along the column. As in other CPI compounds the first of these two effects seems to be the more important. Once again the mobility is increased relative to the parent system and it is only weakly temperature dependent (Fig. 10).
3. Conclusions

The potential great advantage of organic molecular materials is the opportunities they offer for us to tune bulk properties through refinement of the molecular structure and control over intermolecular interactions. In the case of the hexa-n-alkoxytriphenylenes we have shown that the Co₇ mesophase range can be extended into the applications-significant room temperature range either by introducing a lateral dipole into the aryl core or by forming a non-covalent CPI (complementary polytopic interaction) compound. The introduction of a lateral dipole through the inclusion of α-substituents has proved a valuable tool for the modulation of the mesophase behaviour of triphenylene-based discotic liquid crystals but bulky groups such as nitro or cyano can also produce problems. For example, in the case of nitro, the nucleus is distorted from planarity and, also for steric reasons, it is found that the nitro- and cyano-substituted triphenylenes do not form CPI compounds with PTP derivatives. However, in this paper we have shown that the introduction of the much smaller α-fluoro substituents generates the desired lateral dipole without such complications. Although the columnar structure can be stabilized either by introducing a lateral dipole into the aryl core or by forming a non-covalent CPI ‘compound’ and this is not only associated with an increased mesophase range but also an increase in carrier mobility (possibly attributed to an increased correlation length) the later strategy seems generally the more successful particularly in terms of increasing the mobility.

4. Experimental

4.1. Differential scanning calorimetry

Differential scanning calorimetry (DSC) was performed on a Perkin-Elmer 7 thermal analysis system (at a heating and cooling rate of 10°C min⁻¹ in sealed Al pans).

4.2. Time-of-flight photoconduction

For the time-of-flight photoconduction experiments the cells were fabricated by evaporating aluminium onto quartz slides making one of them semitransparent and placing the two slides on top of one another, separated by 5 µm PTFE spacers. The cell was held in an aluminium assembly block which was temperature controlled to within ±1°C. The cell was filled by capillary action and the sample was then thermally annealed to produce a monodomain. The cell uniformity and thickness were monitored using interference fringes and measurement of the interference transmission spectrum using a Hitachi U3000 spectrophotometer. A Fluke power supply was used to supply the potential drop across the cell thus applying a uniform electric field along the columnar director.

Using a nitrogen laser at 337 nm with a 6-ns pulse width, photocurrent transients were excited. The light intensity was controlled using neutral density filters in order to keep the photosignal low enough to avoid signal distortion as a result of space charge effects. The photocurrents were detected as a voltage drop across an input resistor to a pre-amplifier in turn delivering the signal to a 50-W terminated Tektronix digitalizing oscilloscope with a 1-ns rise time. The laser emits radio frequency interference, RFI, picked up by the detection apparatus so it is necessary to collect a second baseline signal with no light on the sample. In this way, in post-acquisition processing the RFI was subtracted and the signal greatly cleaned up. White noise was also reduced by signal averaging [33,34].

4.3. Molecular modelling

The geometries of the molecules under investigation were optimized and a conformational search was performed using the XED force field [35] within the COSMIC programme. Finally, the extended pi-electrons and lone pairs were located based on the force-field parameterization and the semi-empirical calculated charge distribution. The general form of the force field and full details of the routines and the XED force-field parameterization are given in the literature [17]. The global minima from the conformational analysis were then docked in pairs using a free SIMPLEX minimizer. This involves holding one of the molecules stationary whilst another molecule (bullet) is moved towards it. This process is then repeated for a total of 250 bullets with different starting positions, which are distributed evenly around the surface of a sphere. The output from the docking experiment gives the overall interaction energy and its VDW’s and coulombic contributions. By comparing the interactions between the molecules and themselves (i.e., the homodimers U_{AA} and U_{BB}) with the mixed system (i.e., the heterodimer U_{AB}) it is possible to predict whether or not a stable mixture should be formed. The results are used to quantify this difference in interaction with the term ΔE, defined in equation $\Delta E = U_{AB} - (U_{AA} + U_{BB})/2$. A compound is predicted to form if ΔE carries a negative value.

4.4. Synthesis

4.4.1. General. Nuclear magnetic resonance spectra were recorded on a Bruker DPX300 spectrometer. Microanalyses were carried out at Leeds University Microanalytical Laboratory. All C, H, and N analytical figures are percentage values.

The syntheses of HAT6 and of PTP9 [14] and the methods used to make the CPI compounds [22] have been described elsewhere.

4.4.2. 1,4-Difluoro,2-hexyloxybenzene (5). 2,5-Difluoro-phenol (4, 23 g, 0.172 mol) was dissolved in dry, distilled ethanol (300 ml) under a stream of nitrogen. 1-bromo-
hexane (31.75 g, 0.193 mol, 1.2 eq) and potassium carbonate (133 g, 0.964 mol, 5.5 eq) were added and the reaction mixture was stirred vigorously under reflux for 4 days. Dichloromethane (300 ml) was added to the straw coloured mixture, which was then filtered through a bed of celite to remove the potassium carbonate. The filtrate was washed with water (3×100 ml), and dried with magnesium sulphate. Removal of the solvent \textit{in vacuo} yielded 34.07 g of pale brown oil. This was distilled under reduced pressure to yield a colourless oil (29.22 g, 77%), bp 70°C @ 0.7 mmHg; (found: C, 68.8; H, 9.05. C18H28O2F2 requires C, 68.76; H, 8.98; O, 10.18; F, 12.08%).

4.4.5. 1,4-Difluoro-2,3-dihexyloxybenzene (8). 3,6-Difluoro-2-hexyloxyphenol (7, 25 g, 0.11 mol) was dissolved in dry, distilled ethanol (350 ml) under a stream of nitrogen. 1-Bromohexane (45.35 g, 0.275 mol, 2.2 eq) and potassium carbonate (75.1 g, 0.54 mol, 5.5 eq) were added and the reaction mixture was stirred vigorously under reflux for 2 days. Dichloromethane (300 ml) was added to the orange reaction mixture, which was then filtered through a bed of celite to remove the potassium carbonate. The filtrate was washed with water (3×100 ml), and dried with magnesium sulphate. Removal of the solvent \textit{in vacuo} yields 24.07 g of pale brown oil. This was distilled under reduced pressure to yield a colourless oil (18.82 g, 80%), bp 102°C, 0.2 mbar; (found: C, 68.8; H, 9.05. C18H28O2F2 requires C, 68.76; H, 8.98; O, 10.18; F, 12.08%).

4.4.6. 1,2-Dibromo-3,6-difluoro-4,5-dihexyloxybenzene (9). 1,4-Difluoro-2,3-dihexyloxybenzene (8, 8.69 g, 0.0276 mol) was stirred in anhydrous dichloromethane (100 ml) at 0°C. The reaction vessel was fitted with a trap containing sodium hydroxide and nitrogen was bubbled through the reaction mixture to remove the HBr produced. Elemental bromine (3.27 ml, 10.21 g, 0.0638 mol, 2.1 eq) in dichloromethane (100 ml) was added drop wise from an addition funnel over 1 hour. After addition was complete, stirring was continued at room temperature overnight. Saturated sodium metabisulphate solution (100 ml) was added and the product was extracted with dichloromethane (2×50 ml). The combined organic extracts were washed with water, dried with magnesium sulphate and filtered. Removal of the solvent \textit{in vacuo} yielded a brown oil. Filtration through a short silica column using 1:1 toluene:dichloromethane as eluant removed the coloured impurities. The solvent was removed \textit{in vacuo} to yield 1,2-dibromo-3,6-difluoro-4,5-dihexyloxybenzene (6) as a colourless oil (13.5 g, 97.8%); (found: C, 45.9; H, 5.8. C18H26O2F2Br2 requires C, 45.78; H, 5.55; O, 6.78; F, 8.05; Br, 33.84%).

4.4.7. 3',6'-Difluoro-3,4,4',5,3'',4''-hexakis(hexyloxy)[1,1',2',1'']terphenyl (11). 1,2-Dibromo-3,6-difluoro-4,5-dihexyloxybenzene (9, 0.5 mmol) and Pd(PPh3)4 (3 mol% Pd(0), per bromine atom) were stirred in degassed DME (50 ml) under argon. The pinacol boronate ester (3,4-dihexyloxybenzene boronic acid, 10, 1.5 mmol) was dissolved in toluene, degassed, and after about 15 minutes was added to the reaction by canular. A suspension of barium hydroxide (1.5 mmol) in water (3.27 ml, 10.21 g, 0.0638 mol, 2.1 eq) in dichloromethane (100 ml) was added drop wise from an addition funnel over 1 hour. After addition was complete, stirring was continued at room temperature overnight. Saturated sodium metabisulphate solution (100 ml) was added and the product was extracted with dichloromethane (2×50 ml). The combined organic extracts were washed with water, dried with magnesium sulphate and filtered. Removal of the solvent \textit{in vacuo} yielded a brown oil. Filtration through a short silica column using 1:1 toluene:dichloromethane as eluant removed the coloured impurities. The solvent was removed \textit{in vacuo} to yield 1,2-dibromo-3,6-difluoro-4,5-dihexyloxybenzene (6) as a colourless oil (13.5 g, 97.8%); (found: C, 45.9; H, 5.8. C18H26O2F2Br2 requires C, 45.78; H, 5.55; O, 6.78; F, 8.05; Br, 33.84%).

4.4.4. 3,6-Difluoro-2-hexyloxyphenol (7). White crystals of 1,4-difluoro,2-hexyloxybenzene-1-boronic acid (6, 48 g) were dissolved in warm toluene (150 ml) and hydrogen peroxide (43 ml, 30%) was added drop-wise. Heating was continued for 45 min at 100°C. Once the solution had cooled to room temperature water was added (50 ml) and the reaction mixture was stirred vigorously under reflux for 4 days. Dichloromethane (300 ml) was added to the orange reaction mixture, which was then filtered through a bed of celite to remove the potassium carbonate. The filtrate was washed with water (3×100 ml), and dried with magnesium sulphate. Removal of the solvent \textit{in vacuo} yields 34.07 g of pale brown oil. This was distilled under reduced pressure to produce a straw coloured solution. Stirring was continued for 1 hour and then the solvents were removed \textit{in vacuo} at room temperature to yield colourless oil that rapidly formed into white crystals (49 g). These crystals were dissolved in ether (250 ml), washed with water (3×100 ml) and dried with magnesium sulphate. Removal of the solvent yielded white crystals of the title compound (48 g), which were used without further purification.
4.4.8. 1,4-Difluoro-2,3,6,7,10,11-hexakis(hexyloxy)triphenylene. 2F-HAT6 (1a). 3'6'-difluoro-3,4,4',5,3',4'-hexakis(hexyloxy)[1',1'':2',1''']terphenyl (11, 0.5 mmol) was subjected to column chromatography on silica gel using petroleum ether/ethyl acetate as the eluting solvent (using a gradient of 9:1 initially to 4:1 finally) (found: C, 74.96; H, 9.76; O, 11.07; F, 4.38%).

Acknowledgements

We thank the EPSRC, NEDO and the Leverhulme Trust for funding.

References

35. XED v5.52 (C) Cresset Biomolecular Discovery Ltd.

CALL FOR PAPERS

Be a part of the leading event for photonics research and applications—submit your abstracts today.

Photonics WEST.

21–26 January 2006
San Jose, California USA

Share your research with your colleagues. Submit your paper to these four major SPIE International Symposia.

- BiOS 2006—International Biomedical Optics Symposium
- LASE 2006—Lasers and Applications in Science and Engineering
- Optoelectronics 2006—Integrated Optoelectronic Devices
- MOEMS-MEMS 2006—Micro & Nanofabrication

If selected, your editor-reviewed paper will be published in the SPIE Digital Library just 2 to 4 weeks after the conference. No other publisher today has editor-reviewed research online as quickly. In a world where science and technology knowledge increases daily, timing matters.

Your participation adds to the critical mass of knowledge and furthers the global impact of these technologies.

SPIE—The International Society for Optical Engineering is a not-for-profit technical education society dedicated to advancing scientific research and engineering applications of optical, photonic, imaging, and optoelectronic technologies through its meetings, education programs, and publications.

spie.org | spie@spie.org | Tel: +1 360 676 3290
1000 20th St, Bellingham WA, 98225-6705 USA